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Abstract

We describe a framework for synthesizing software systems based on abstracting software
system designs and the design process. The result of such an abstraction process is a generic
architecture and the process knowledge for customizing the architecture. The customization
process knowledge is used to assist a designer in customizing the architecture as opposed to
completely automating the design of systems. We illustrate our approach using an implemented
example of a generic tracking architecture which we have customized in two different domains.
We describe how the designs produced using KASE compare to the original designs of the tvo

systems. describe current work and plans for extending KASE to other application areas.

I Introduction

Synthesizing software systems by reusing previously developed components has long been a
subject of considerable interest in software engineering. One of the most effective principles that
has emerged for reusing software is abstraction. Abstraction consists of extracting the inherent,
essential aspects of an wifact. while hiding its irrelevant or incidental properties. One of the
ways in which abstraction fosters reuse is by providing a class of artifacts that can be instantiated
or customized to produce several different artifact instances meeting different requirements.
Procedural and data abstraction. information hiding, and parameterized programming are
examples of some of the most notable application of the abstraction principle in software
systems.

The abstraction principle has also been used as the basis for automating the construction of
artifacts that would normally require a creative process. For example, Emycin (van Melle, 1980).
an expert system shell was developed by abstracting the control structure of Mycin: abstracting
out the process ot building blackbouard systems yielded AGE (Nii & Aiello, 1979).
Commercially availuble expert systems shells and application generators are based on different
mixtures of design and process abstractions.  More recently. abstraction has been successtully
used in algorithm synthesis, e.g.. the KIDS system (Smith, 1990) contains abstractions of several

different classes of algorithms in the form of algorithm theories which can be (semi-)
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automatically instantiated to synthesize specialized algorithms for several different problem
instances.

In the KASE (Knowledge Assisted Software Engineering) project (Bhansali & Nii, 1992a;
Guindon, 1992) we are investigating the utility of abstracting sofrware system designs and the
design process. Designing software systems is a creative and ill-understood process. Successful
software designs are created by a small group of designers; however, the process is rarely
documented and the final design is typically not well documented. Consequently, it is difficult to
understand and maintain the system, which in turn leads to poor reuse. Our approach to this
problem consists of (1) identifying useful classes of software systems and the problems they
solve, (2) abstracting the design of the system as a generic architecture for that class of
problems, (3) formulating rules and constraints for customizing the architecture based on specific
problem descriptions, and (4) providing a computational environment that enables designers to
construct specific systems semi-automatically by customizing the generic architecture. Such an
approach allows us to reuse the architecture for multiple applications within the class, capture the
process of software design which could be used to maintain the system (Bhansali, 1992) or be
reused for multiple designs, and ultimately, learn algorithmic descriptions of the design process
(Garg & Bhansali, 1992).

A guiding theme in our research is to provide a set of software tools that support the way
humans design. Thus, our goal is not to create a fully, automated software synthesis system, but
rather to provide a mixed-initiative system in which the design task is divided between a human
designer and the system. Typically, KASE provides design alternatives and default suggestions
for architectural parameters. explanations for its suggestions, dependency maintenance between
ditferent design decisions. and consistency checking. The human designer determines the order
in which the vartous design actions are initiated and makes the final choice for each design
decision. which may or may not be based on the suggestions ottered by KASE.

Our approach may be characterized as a semi-tormal approach. It is not completely tormal
where the semantics of a problem specification and architectural descriptions are contained
entirely within a set of mathematicul equations. Nor is it completely intormal where the name of
@ symbol carries all the information for a human as in, e.z., svstems like IBIS (Conklin &
Begemuan. 1989) and hvpertext. Our approach relies instead on keywords and commonly
accepted domain-specific ontology which are not tormally defined. However, there are explicitly
represented constraints and rules that provide some semantics to the symbols. We were motivated
in adopting this approach becuuse we wanted to create a practical system that could be used by
software designers who are not well-versed in formal. mathematical notation; at the same time
we wanted a machine to be able to reason with the representation, draw useful inferences, and
provide mtelligent assistance to designers in customizing generic architectures.
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We have used KASE to design systems in three different application areas (Bhansali, 1993;
Bhansali & Nii, 1992b). In this paper we describe our approach and experience in synthesizing
software designs in one such application. The application is that of tracking a set of moving
objects (e.g. aircraft) based on an analysis of signals emitted by them. We have designed two
different systems in this application area. The two systems had been originally designed several
years ago by two different teams of designers. What we have shown in KASE is a rational
reconstruction of the design of these two systems by reusing a single generic architecture and the
same design rules. In section 7 we compare the designs that were produced by KASE with the
original designs of the two systems. The comparison shows that the designs that were produced
by KASE were more systematic. more comprehensible, and less likely to have errors due to
omission. On the other hand they were not as efficient as the original designs and required some

amount of application-specific optimization.
1.1 Framework for Architecture-based Software Design

Figure 1 shows an overview ot the KASE system. The shadowed boxes represent knowledge
components that are part of KASE. Figure 2 gives an overview of the process of synthesizing

systems using KASE.
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Figure 1. Overview of software design in KASE
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Figure 2. Process model for synthesizing software systems using KASE. The
shaded box denotes process not described in this paper.

A designer initiates the design process by first selecting a generic architecture trom a library
based on the problem class for his particular problem and the desired solution features (Section
2). Associated with the generic architecture is a specification for the problem class called a
problem-class schema as well as a problem-class model. An individual problem is specified by
instantiating the problem class schema: the problem-class model contains the vocabulary of terms
that help in the instantiation (Section 3). Also associated with the generic architecture is
customization knowledge which containg knowledge for customizing the generic architecture and
is the basis of KASE's intelligent support (Section 4). Finally, KASE has a constraint checker
that is used to check for the consistency of the design with respect to certain architecture-specific
constraints (Section 5).

Figure 3 illustrates the general relationship between generic architectures. problem-class
models. and customization knowledge. It can be seen that a generic architecture may be used 1o
solve different problems belonging to different problem classes: likewise a problem may be
solved using different generic architectures. For example, Generic Architecture | may be used to
solve all instances of Problem Class 1 as well as all instances of Problem Class 2. and instances
ot Problem Class 2 may be solved using either Generic Architecture 1 or Generic Architecture 2.
The customization knowledge is the crucial link between a generic architecture and a problem
class; it contains rules that determine how the parameters of a generic architecture must be
instantiated in order to solve problem instances.

[n our current work we have shown how a single generic architecture can be customized to
solve two different problems that are instances of a problem class by reusing a common
customization knowledge. Investigating how a single generic architecture can be used to solve
problems belonging to different problem classes, and how a single problem instance can be

solved on different generic architectures are topics that we have left for future work.



Problem 1.a

Generic Cust. . - 4
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Figure 3. Relationship between Generic Architectures, Problem classes, and
Customization knowledge.

Subsequent sections describe each of the processes in Figure 2 - selection of an architecture,
problem specification, customization, and consistency checking - in detail. At this point it might
be useful to look at an example from a familiar domain to help ground the concepts and
terminology in KASE. The example is for illustration purposes only and has not been
implemented in KASE.

1.2 Example: Compiler synthesis

Suppose we were to use KASE to help software designers in designing compilers. The
problem class can be described as follows: Given the syntactic and semantic specification of a
source language and a target language, design a system that takes as input a string, and,
provided the string is syntactically valid in the source language, produces an (semantically)
equivalent string in the target language.

The problem class schema consists of a set of roles representing the parameters of the problem
and constraints on the values ot the roles. For this example the problem schema would have as
roles the source language syntax constrained to be a context-tree grammar and the sowrce
language semantics constrained to be specified in. say, an operational form. The problem-class
model would have terms like grammar, context-free grammars, regular grammars. productions,
start symbol, terminals, non-terminals, and other auxiliary concepts that a user needs to know in
order to specify problems as an instance ot a problem class (i.e. fill the problem-schema roles
with values). A single. problem instance would then consist of a particular grammar (a set of
productions, a start symbol, the set of terminals. and the set of non-terminals), a specific
instruction set for a target language. the meuning ot each syntactically valid string that can be
generated from the start svmbol. and so on.

A generic architecture for this problem class might be as shown in Figure 4 (adapted trom

tAho & Ullman. 1977)). The architecture is an organization of generic modules that implement



the main phases of a compilation process. The solution features associated with this generic
architecture might be, e.g., that this is a single-pass compiler, or that it requires time and space
that is O(n) where n is the length of the input string. The customization process would consist of
determining the detailed algorithms and data structures for implementing each ot the generic
modules. The customization knowledge would consist of rules that specify how properties of an
individual problem specification suggest/constrain the implementation choices for the generic
modules. An example of such a rule would be: If no production right side in the source grammar
is € or has two adjacent non-rerminals, then an operator-precedence algorithm may be used as
the parsing algorithm in the parser module. Finally, the constraint-checker would have certain

constraints that need to be satisfied by the design of any compiler. For example, if an LR parsing

Symbol Table

Manager
source > object
strin i [ntermediate Object cod
suing of Lexical N Parser > . Code C ! 5
Analyzer Code Optimizer 7| Code
Gencrator ! < Generator

Error
Handler

Figure 4. A generic compiler architecture.

algorithm is being used then the action entry of the LR parsing table should be unique (i.e. there
are no conflicts).

The above is a pedagogical example given in order to elucidate the main concepts in KASE in
terms of a well-known and familiar example. For the rest of the paper we will use the tracking
application domain to illustrate in detail the design process in KASE. Specifically, we will
consider the following problem:

Ship and Submarine Tracking Problem: There is u region of ocean in which ships and
submarines are moving. As they move they emit noise which can be detected by sonar sensors.
Often the received signal is distorted by background noise and other objects in the environment.

The problem is to design a system to analyze the properties of all the signals received by sensors
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located at collection sites, determine the identity, location, heading, and other characteristics of
the ships and submarines, and report them periodically (see Figure 5).

Pa

Collection
site

A

Figure 5. Tracking ships and submarines. The lines represent tracks and the
circles represent positions of ships and submarines at different times.

Collection site

2. Architecture Selection

The process of designing a system in KASE begins by a designer selecting an appropriate
generic architecture from the library. The library of architectures is indexed to help in the
selection process. The indexing scheme is based on two main hypothesis. Broadly speaking, the
hypotheses state that generic architectures are a cross product of problem-clusses and the high-

level design decisions for solving the corresponding problem instances.

2.1 Problem Class Hypothesis

The first hypothesis is that architectures are designed to solve a class of problems thar share
certain features. For example there may be an architecture that is designed to analyze signals in
a batch: this architecture would be different from another architecture that pertforms analysis of
continuous signals; these two architectures would be radically ditferent from. say, a real-time
interactive system that is governed by strict timing constraints and user interactions. According to
the problem class hypothesis, we can use problem classes as one component of an index to
generic architectures. In KASE, when a generic architecture is created, an annotation is attached
to the urchitecture that describes the class of problems which can be solved using the

architecture. Subsequently. during architecture selection. KASE presents a list of all architectures
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and their annotated problem class descriptions. From this description a designer can determine to
which problem class his or her problem belongs and use that to select a generic architecture.

A problem class description is obtained by abstracting the common features from a class ot
problems. This description would depend on how general the architecture is. For example, a
pipelined architecture is a very general architecture and the assoctated problem class would be
very general. On the other hand, a pipelined architecture for a compiler is quite specific with the
number of components and the interfaces of each component clearly defined; consequently, the
associated problem class - compiling a language of a certain type - is quite specific.

As a concrete example in KASE, there is a generic architecture for a problem class called
tracking which is described as: Track moving objects based on signals received from the objects
and infer properties of the moving objects. (Section 3.1 shows how this problem class is
represented in KASE.) Thus, in addition to the Ship and Submarine tracking problem, this
architecture could be used, say, to track aircraft based on their radar emissions, or any other
moving objects that emit a detectable signal.

We currently do not address the issue of how specific problem classes can be identified and
associated with generic architectures. There has been some related work (Shaw, 1991) in
identifying common architectural idioms and how features ot a given problem make a particular
architectural choice appropriate or inappropriate. However, this is an open problem requiring
further research.

2.2 Solution Features

A problem class by itself is not sufficient to determine an appropriate architecture tor a
problem becuuse there may be several, quite different designs tor a particular problem depending
upon how vartous design issues and trade-offs involved in decomposing and solving a problem
are resolved. Our second hypothesis governing the selection ot architectures is that an
architecture embodies a set of high level strategic decisions on how to decompose and solve a
problem.

In general, these strategic decisions depend on the problem class. For example. tor the tracking
problem one ot these strategic decisions would be whether to use concurrency or not. For some
other problem class a strategic decision might be whether the system tunctionality should be
decomposed into a set ot horizontal lavers or whether to use weukly coupled vertical partitions.
For vet another problem class the degree of accuracy required in the solution may be the
overriding factor in selecting an architecture. The way a strategic dectsion is resolved depends on
the requirements of @ problem. The collection of strategic decisions associated with a generic

architecture is called the solution feanures - they characterize the solution to a problem.
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The size of the solution features set depends on the degree of abstraction of an architecture.
For a completely instantiated architecture this size would be maximal and correspond to the set of
all design decisions made in going from the requirements of a problem to the final design. For a
generic architecture, the solution features would be some subset of the solution features of the
fully instantiated architecture. The solution features are represented as attributes associated with a
generic architecture. For example, the solution features associated with one generic architecture

for tracking are as shown in Figure 6.

Signal-processing-strategy{symbolic,statistical]: symbolic
Processing-platform{uni-processor, mulii-processor] : uni-processor
Processing-mode[incremenial, baich] : incremental
Processing-knowledgelalgorithmic, heuristic] : heuristic

Figure 6. Solution features associated with a generic tracking architecture. The terms in italics represent choices
for the features and the term on the right of the colon represents the feature that is embedded in one particular
generic architecture,

The solution features and the various alternatives choices for them are not defined formally
and are not used by KASE to do any automated inferences. They simply serve as keywords for
indexing the generic architecture library. However, once the various solution features have been
identified, they may be used as a basis for designing other generic architectures by taking
different combinations of the solution features, for example a generic architecture for tracking
that uses a multiprocessor and processes input signals in a batch.

For each generic architecture that is selected for a problem class, KASE presents to the user
the solution features embedded in the architecture and based on the requirements of a problem

the user selects one of the architectures.

3 Problem Specification

Having identified generic architectures with problem classes, we can create and store generic
descriptions tor the problem classes along with the architectures. In addition, we can create a
model for the problem-class which contains the vocabulary of concepts relevant for describing
problems belonging to the problem class. Individual problem instances are then specified by
instantiating the generic problem-class description using the problem-class model.

3.1 Problem Class Description

We represent a class of problems as a problem schema. A problem schema consists of a set of
roles. which represent the parameters of a problem, and constraints on the values of the roles.
Instantiating these roles with specific values produces a problem specification instance. Figure 7

shows the problem schema for the tracking problem class.
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objects-to-be-tracked: irackable-objects =
relations-to-be-tracked: rrackable-relations =
atributes-to-be-tracked: anrributes =
tracked-object-behavior: state-diagrams =
tracked-relation-behavior: srate-diagrams =
rracking-operations: operations =
input-signal: signal =

signal-collectors: collecrion-sites =

Figure 7. Tracking Problem Class schema.

The terms to the right of the colon denote type restrictions on the problem parameters. In
general, there may be other constraints in addition to the type constraints on the values of the
parameters. For example, in the tracking problem class there are constraints that check that the
user specifies at least one operation that takes as input a signal record and computes attributes of
an object that is an instance of objects-to-be-tracked. (It is possible to implement this constraint
because operations are specified declaratively in terms of inputs, outputs. preconditions, and
postconditions). Other examples ot constraints implemented for this problem class are given
later. To specify individual problem instances, i user has to provide values for each of the roles

in the problem class schema such that the corresponding role constraints are satisfied.

3.2 Problem Class Model

The types that appear in the problem class schema are part of the problem-class model. In
general, a problem class model contains the basic concepts or vocabulary necessary for modeling
a class of problems. This includes clusses ot objects, common attributes of the objects, generic
relations between them, and the specifications of generic operations. For capturing the dynamic
behavior of the objects. the model might contain the minimal set of states tor various objects,
transitions between these states, and events triggering these transitions. Note that it is not critical
for the problem-class model to be complete (e.g., contain all relevant classes of objects needed to
model a particular application) since our objective is not to provide complete automation for the
sottware design. However. the assistance that KASE can provide to a designer is based on its
customization knowledge (Section 4) which in tum depends on how complete the problem class
model is. Theretore. a relatively complete problem-class model enhances the usefulness of
KASE.

In KASE, problem-class models are created using an object-oriented modeling methodology
(Rumbaugh.Blaha.Premerlani.Eddy. & Lorensen, 1991). The model description begins by first

S,
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defining the types used in the problem class schema. Objects, relations, attributes, operations,
states, events, transitions, and a set of primitive data types (that are provided by KEE!, the
underlying object-oriented environment) constitute the set of basic available types. All other
types are defined as subtypes of this basic set. In object-oriented modeling a model consists of
three parts: a static model, a dynamic or behavior model, and a functional model. The static
model consists of the objects, relations, attributes, and operations on the objects and relations.
The behavior model shows the temporal relationships between objects and relations in terms of
states, events, and transitions between the different states. This is shown using a state diagram.
Finally, the functional model specifies the meaning of operations specified in the object model.
The operations are typically specified in terms of the inputs, outputs, preconditions, and
postconditions, and/or an equation relating the output to the input.

Figure 8 shows fragments of the static, behavior, and functional model for the tracking
problem class. For each object and relation in the static model, common attributes, constraints on
the type of attributes, and common operations are also specified. The behavior model is shown as
a state-diagram in KASE. KASE contains a graphical user interface that allows users to create

and edit such diagrams graphically (Bhansali, 1993).

trackable-object

objccl< collecting-site

signal

. ) line-of-bearing
relation —rackable-relation
membcer-relations

(b) Behavior model: state rransiiion diagram for
(a) Static model objects-to-be-rracked. The lubels on arcs
represent evenls.

(DEF-OPERATION compute-speed-tfrom-2-positions
sinput ((7pl position) (7t1 time) (7p2 position) (M2 time))
:output ((?s rcal)}
:body assign[7s, vector-norm[vector-subtract{?p2 "plJ/in2 - th}
)

(a) Functional model: definition of an operation to compuie an
altribuie of a irackable-objeci.

Figure 8. Fragments ol the static, behavior. and functional model for the tracking problem class.

1. . . - -
'KEE iy arcgistered trademark product of Intellicorp Inc.
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3.3 Problem Instance Specification

The problem class schema and the problem-class model are used to drive the acquisition of
specifications for individual problem instances. Before a problem instance is specified, a user
extends the problem-class model by introducing problem-specific terms. For example, the user
may create new classes of objects and relations as specializations of the objects and relations in
the problem-class model. A problem class model helps in this process in three ways:

1) It provides an organizational structure for the problem-specific knowledge and
communicates to a user the kinds of knowledge needed and how to represent them. For example,
consider Figure 9 which shows the extension of the tracking problem-class model for two
different problem instances. It can be seen that many different kinds of objects like an emitter (an
object that emits radar signals), a cluster (a set of aircraft sharing certain properties), a line (which
represents a signal of a particular frequency), and a harmonic (a set of related lines) are all
classified as a subclass of trackable-object. This is because the existence of each of these entities
can be inferred from the information available in a signal. Without the organizational framework
provided by the problem-class model, these objects might have been classified differently by
different users. As we will see later, the organization of the problem-specific knowledge is
important in determining the support that KASE can provide to a user during customization.

Note, that we are making a crucial assumption here: the meaning of the various concepts that
constitute the problem-class model are shared by the problem-class modeler and the problem
specifier. The use of mnemonic names, textual annotation, and explicitly represented constraints
facilitate the sharing to some extent. However. general techniques for communicating such
ontological commitments is a research topic beyond the scope of our current work (Gruber,
1991).

2) The problem-class model also provides detault types and values for certain atuributes and
default definitions for certain operations. For example, the co-ordinate system tor representing
the position of objects. and the definition of an operation that computes the average speed of an
object given its position at two different times, can be inherited directly from the problem-class
model. This reduces the amount of ettort expended in specifying new problem instances.

3) Finally, certain constraints can be built-in to validate a problem specification for
consistency. For example. for the tracking problem there is a constraint to ensure that for at least
one tracked object, the user defines at least one operation that takes as input a signal and creates
an instance of the tracked object. (Note. that in general it is not necessary that each trackable
object instance be inferred directly from the signal - some of them may be inferred indirectly
through the existence of other objects). Similarly. there are constraints that check that the states
used in defining operations have been defined in the state transition diagram. the attributes

reterenced in the operation detinitions have been detined in the static model, and so on.
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Figure 9. Instantiation of problem-class terms for two dilferent problem instances.

Problem 2

Figure 9 showed the extension of the tracking problem-class model for two different problems

— wracking aircraft based on processed radar signals (Brown,Schoen, & Delagi, 1986) and

racking ships based on processed sonar data and intelligence reports. The attributes of a typical

domain object and the operations associated with the object are shown in Figure 10.

Cluster

id

position
heading
activity

speed
threat-potential
state

create-cluster
split-cluster
merge-cluster
defete-cluster
compute-position

Anributes

(Operations

Moo/

Problem [

Source

type

position
confidence
creation-time
suspension-time
state

create-source
suspend-source
dissolve-source
refine-source-type
compute-position
compute-confidence

o

Problem 2

Figure 10. Auributes and operations of two tvpical objects in two different tracking problems.
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An operation is specified in terms of the inputs, outputs, precondition, postcondition, and
(optionally) an expression in a high-level language. The generic state transition diagrams
associated with trackable-object is intended to provide a starting point to a user in specifying the
operations. Typically, the user would copy the generic state transition diagram associated with
an object and then modify it using the graphical tools provided by KASE. Once the state
transition diagram is customized, the designer would fill in the definitions of each operation.
Figure 11 shows the customization of a state-transition diagram for the source object and the

definition of an operation on it.

timeout(N)/
dissolve-source()

verified

(a) Insianiiation of a generic siate iransition diagram for an object called source (see Figures 8 & 9)

(DEF-OPERATION dissolve-source

:comment "If a source is suspended for more than N time-units
then remove it [rom further consideration."

sinput ((7s source) (7t time))

‘precondition (AND (= (state 75)-SUSPENDED)

(> (- 7t (suspension-time 7s)) N))

-body ()
:postcondition (= (state 7s) DISSOLVED)

(b} Definition of the dissolve-source operation appearing in the above diagram.
suspension-time andstate are aitribures of source (see figure 10).

Figure I1. Specifying a probleny instance: behavioral and functional aspects

4 Customizing a Generic Architecture

Just as a problem class is an abstraction of a set of problem instances. a generic architecture is
an abstraction of the solutions for a set of problems. It is obtained by abstracting the common
features from the solutions of a set of problems. Figure 12 shows a generic architecture for the
wacking problem. This architecture is based on the blackboard model and its solution features are
shown in Figure 6. These features of the urchitecture satisfy certain problem requirements, e.g.,
computational cost - an architecture based on conventional statistical processing instead of
symbolic manipulation of the data could be computationally too expensive.
(Nii.Feigenbaum.Anton, & Rockmore, 1982) gives a1 more detailed description of the rationale

for using a blackboard-based architecture for these kinds of problems.
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m-TrackingArchitecture

m-SituationBoard m-TrackingComponent

m-TrackingAgent 1

m-BlackbouardPanel
m-Signal

Fcedegr m-TrackingAgent 2
:

m-Repornt
Generator

m-Control

im-ControlPanel

Figure 12. A generic tracking architecture

The architecture consists of five major submodules (a module is defined shortly). The m-Signal-
Feeder and m-Report-Generator modules represent the system's interface to the external world and
contain routines to read the signals provided by collection sites and routines to generate periodic
reports respectively. m-SituationBoard is used to represent the state of the various tracked objects
and relations as well as certain control information. m-TrackingComponent contains submodules
called m-trackingAgents that compute the values of the data represented in m-SituationBoard. m-
Control contains routines that monitor the activity on the m-SituationBoard and decides what action
to take next. (This is a simplified description of a blackboard-based architecture. For more details
see (Jagannathan,Dodhiawala, & Buum. 1989; Nii, 1989)).

4.1 Generic Architecture

We define a module as a packaging ot procedures and/or data in a logical unit. In KASE, a
module is represented as an object with a set of atributes. Figure 13 shows the minimal set of
attributes for each module. Attributes that are preceded by an * are derived attributes whose
vilues are computed from the primitive atuributes (e.g., the input to a module is simply the set of
variables that form arguments to procedures provided by the module and the results of
procedures required by the module). For each attribute, there is a type and cardinality constraint
on the values that can be used to instantiate it. This is indicated by the keywords :valueclass and
cardinality, respectively. The cardinality is specified as a range (min - max) with ? indicating
that there is no restriction on the maximum cardinality. Thus, for example, the submodule slot of
@ module can be either nil or be instuntiated to a set of any number of modules. whereas the

supermodule slot can be at most a single module.




MODULE

submodules modules contained within this module
:valueclass module
:cardinality (0-?)

provides procedures provided by this module
:valueclass procedure
:cardinality (1-7)

requires procedures required by this module
:valueclass procedure
:cardinality (0-7)

has-locally local procedures
:valueclass procedure
:cardinality (0-7)

has-access-to  modules swhich can provide procedures 1o 1his module
:valueclass module
-cardinality (0-7)

*supermodule module that contains this module (inverse of submodule)
:valueclass module
:cardinality (0-1)

*inputs data flow into the module
:valueclass any
:cardinality (0-7)

*outputs data flow out of the module
:valueclass any
:cardinality (0-7)

*calls modules called by procedures within this module
rvalueclass module
:cardinality (0-7)

annotation an English description of the functionality of this module
:valueclass string

Figure 13. Minimal internal representation of a module.

Our representation of a module is similar to the traditional notion of & module in the literature
(Prieto-Diaz & Neighbors, 1986), except that we do not have a slot to represent declarations for
data structures. Data structures are represented using the notion of data encapsulation, L.e. as an
instance of an abstract data type. Thus, instead of providing a data structure that can be accessed
ot modified by external routines, a module simply provides a set of operations that can be
pertormed on it. For example, consider the module m-signal-feeder which is implemented as a file
containing a sequence of records, where each record corresponds to a signal obtained from a
collection stte. Such a module is represented as:

module m-signal-tfeeder
provides open-signal-file, close-signal-file, rcad-next-record.
requires nil

Since there is no write operation, other procedures can only read records trom this file. Other

examples of modules in the tracking architecture are shown below.
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module m-Control module m-TrackingComponent

submodules nil submodules __
:valueclass m-TrackingAgent
provides p-simple-control :cardinality (1-7)
:valueclass ONE.OF (p-simple-control,
p-hybrid-control) provides get-TrackingAgent-triggers,

execute-Agent
requires get-TrackingAgem-triggers,

get-BB-levels, requires get-BB-level-state,
et-BB-level-instances, ut-BB-level-state
g |

get-posted-events, . . .
has-access-to m-SituationBoard
has-access-to m-TrackingComponent,
m-SituationBoard

has-locally determine-executable-agents, .
determine-BB-nodes,
schedule-operations,
execute-schedule

A module interface is defined in terms ot the procedures (or operations) that it provides to
other modules, and the procedures that it requires from other modules. The other attributes are
used to constrain the way a system is structured and the way modules communicate with each
other. For example, a module may only use procedures provided by its submodules or 1 module
that it has access to.

A generic module is an abstraction of a set of modules obtained by viewing some of the
attributes of a module as parameters. Although. technically each of the module attribute may be
considered as a parameter, we have found that the two most usetul one are the submodules and
the provides atribute of a module. For example. in the tracking architecture the m-
TrackingComponent module is a generic module in which the submodules attribute is a
parameter. A specific instance of m-TrackingComponent is obtained by instantiating this atwribute
with a specific set of submodules. Similarly. the m-Control module shown above is a generic
module with the provides attribute being a parameter. There are constraints which determine how
the parameters of a generic architecture may be instantiated. One of the constraints is a type (or
valueclass) constraint.  For example, for the m-TrackingComponent the submodules are
constrained to be of tvpe m-Tracking-Agenr which is another generic module. and for the m-
Control module. the provides slot is constrained to be either p-simple-control or p-hybrid-control

- which are generic procedures.
4.2 Generic Procedures

Analogous to modules, there is a notion of generic procedures in KASE. A procedure is

represented in KASE as shown in Figure 14. A generic procedure is obtained by treating the
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inputs, outputs, or body of the procedure as a parameter. The valueclass for the body atuibute of
a procedure is a program-schema or a template similar to the notion of a cliché in Programmer's
Apprentice( Waters, 1985); a specific value for the body is a refinement of the program-schema
such that the pre- and post-conditions of the procedure are satisfied. Currently, KASE does not
support the verification of programs, and hence the pre-conditions and post-conditions are not
being directly used for supporting code synthesis. However, section 6.5 describes how certain
design rules use information provided by the pre- and post-conditions to suggest parameter

values.

PROCEDURE
inputs
:valuectass (1d, datatype)
:cardinality (0-h
output
rvalueclass (id, datatype)
:cardinality (0-1)
precondition
:valueclass logic-cxpression
:cardinality (O-1)
postcondition
‘valucclass logic-cxpression
:cardinality (0-1)
body
valueclass program-schema
)cardinality (1-1)
annotation
:valueclass string
:cardinality (1-1)

Figure 14, Representation of a procedure in KASE

As an example, consider the program schema? associated with a generic procedure called p-
simple-control:

procedure p-simple-control

body =
toop[{ parfassignfagents, determine-cxecutable-agents[]],
assignfnodes, determine-BB-nodes{]1],
assign[schedule,determine-schedulefagents nodes]
callfexccute-schedule[schedule]} ),

lermination-condition(]]

= The program schemas are written in a simple language that is derived from the symax of Mathemuatica. They
can be casily converted 1o code in some executable tanguage. Currently there exists a translator that converts

proarams writien in this language mto Fortran.
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The above procedure determines a set of tracking-agents and nodes (instances of objects and
relations represented in the SituationBoard), creates a schedule for executing the tracking-agents
on the relevant nodes, and then executes the schedule. The construct par{statement, , statement, ]
means that the order in which the two statements statement, and statement, are executed is
unspecified. During customization, one of the customization steps would be to determine the
order of execution of these two statements. Depending on which statement is performed first, we
get two quite different implementations of the control algorithm. (In blackboard terminology, this
is referred to as determining the focus of atrention.) Each of the operations in the program schema
( e.g., determine-executable-agents, schedule-operations) may be either a subroutine from a code
library or may be another program schema.

The above is an example of a very specific program schema. At another extreme, we have a

very general program schema like the following:

procedure Tracking-operation-schema
input (istate : BB-level-state)
output (oslate : BB-level-state)
precondition true
postcondition tnue
body

valueclass: program-schema

This 1s a general class of procedures that take as input an instance of type BB-level-state (which
represents the state of all objects and relations represented in the m-Level modules of m-
BlackboardPanel)) and produces a new BB-level-state. The only restriction is that the operation
terminates. As described shortly, KASE contains customization knowledge, in the form of rules,
that suggest to a designer the set of all useful instances of the Tracking-operation-schema based
on the customization of m-Blackboard-Panel.

With the ubove definition of modules. a generic architecture can now be defined simply as the
top-level generic module in a system. Thus. a generic architecture is defined compositionally in
terms of its constituent (generic) submodules and procedures and the constraints on those
submodules and procedures. The process of customization is then defined as the process of
instantiating the parameters of the various generic modules and processes comprising a generic
architecture.

4.3 Customization Knowledge

KASE provides active suppott to a user in customizing an architecture by providing a list of

customization actions that need to be performed for each generic component (module or

procedure). suggesting ways tor doing the customization, and providing rationales for its
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suggestions. The knowledge for providing this support is represented as customization knowledge
for each generic architecture. This knowledge has to be acquired from experienced designers who
have designed systems within the scope of a generic architecture. Techniques that can help
designers in acquiring this knowledge are the subject of active research within the knowledge
acquisition community but a discussion of these techniques is beyond the scope of this paper. .

The customization knowledge associated with a generic architecture is essentially a set of rules
or methods that can assist a user in finding appropriate values for the parameters of the generic
modules and procedures in the architecture. In KASE, the customization knowledge is packaged
as a set of customization commands which are associated with a generic component. A
customization command is represented as shown in Figure 15.

The suggestion-generator is a pointer to a method (a lisp function) or a set of rules (written in
KEE's rule language) which generates suggestions tor instantiating the value of a parameter.
During customization, the suggestion-generator is invoked to obtain a list of alternatives for
instantiating a parameter value. The user may then select one of the suggested values for
instantiating the parameter.

The instantiating-method attribute points to a method used to perform the customization. The
method takes as input the selected parameter value. In most cases, it simply updates the value of
the parameter and marks the parameter as being customized. In the case of procedure parameters,
the instantiating method may also invoke a set of transformation rules to refine the procedure
body.

CUSTOMIZATION COMMAND
generic-unit [ pointer (o generic nnil with which this customizalion is associared

:valueclass ONE.OF (module procedure)

parameter : name of paramerer
valueclass _ Lcan be name o] any altribuie of the generic unit
suggestion-generator ; see fext

:valueclass lisp-function OR rule-sct
instantiating-method ; see rext

:valueclass lisp-function

depends-on [ see 1exi
svalueclass _ sany customizaiion parameter or airibure of a problem-specific unit
rationale 1 see rext

svalueclass string

Figure 15. Representation ol customization knowledge in KASE
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The depends-on attribute contains a list of other customization parameters or objects from the
problem-specification which are used in the methods for generating suggestions. In general, the
value used to instantiate a parameter depends on the values of these parameters and objects. This
information is used by KASE to restructure a chronological sequence of design steps into a
dependency graph. If at some point in the design, a designer wishes to retract a certain design
step or change the problem requirements, KASE uses the dependency graph to identify all and
only those design steps that are potentially affected by the retraction. It then retracts all the
affected design steps while retaining the effects of those design steps that are not affected by the
change.

The rationale slot is provided so that a user may add his or her own comments on why a
parameter value was instantiated to a particular value (if the user does not choose one of the
KASE-suggested values). This is currently in the form of uninterpreted English text and is meant
to serve as a design documentation.

An example of a customization command is the following:

customization-command Suggest-BB-levels
generic-unit m-BlackboardPanel
parameter submodules
suggestion-generator Blackboard-levet-rules
instantiating-method submodule-instantiating-method

depends-on ((instances objects-to-he-tracked) (instances relations-to-be-tracked) ...)

This customization command can be used to determine the set of submodules of the module m-
BlackboardPanel. Each of these submodules must be an instance of the generic module m-Level.
The customization method is implemented as a set of rules called Blackboard-level-rules. An

example of one such (paraphrased) rule is:

If X is a subtvpe of objects-to-be-tracked and aunbutes of X are to be reported

then there should be a submodule of m-BlackboardPanel of type m-Level that manipulates objects of type X .

The outcome of this customization command does not depend on any other parameter of the
zeneric architecture but it depends on some problem class entities like objects-to-be-tracked and
relations-to-be-tracked. The result of the customization affects the customization of another
parameter of the generic architecture - the submodules of m-TrackingComponent. which would

theretore have the above parameter in its depends-on slot. If at some point the set of objects that
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need to be tracked changes, KASE can automatically undo the customization of these two (and
other dependent) parameters.

Note that the customization knowledge depends on the generic architecture and the
formulation of the problem-class model for the corresponding problem-class. However, it is
independent of a particular problem description: there are no problem-instance-specific terms in
the rules comprising the customization knowledge. Thus, the customization knowledge serves to
"merge" the domain model for an application problem and a generic architecture to produce an
application-specific architecture; the problem-class model provides the intermediate vocabulary

for expressing the customization method that does the merging.

S Constraint Checking

The customization knowledge associated with a generic architecture enables KASE to provide
a systematic methodology tor designing systems. Our hypothesis is that such an approach
enables a designer to create a design that is relatively free from errvors if the customization
knowledge is correct. However, there are two ways in which errors can be introduced in the
design.

First, the customization knowledge may be incorrect. In general. it is not possible to guarantee
the correctness of the customization knowledge since some of it is heuristic in nature. This seems
to indicate the limitations of our approach and provides a criterion for estimating the utility of the
KASE approach for particular problem classes. This is discussed in greater detail in Section 9.
Alternatively, such errors may be handled by an iterative process of simulating the prototype
design, identitying the sources of errors, modifying the customization knowledge. and re-
synthesizing the design. However. currently KASE does not contain tools to support this process.

A second way in which errors can be introduced in the design is due to the fact that KASE is
based on a design assistant metaphor (as opposed to an automated designer). Thus it is possible
for a designer to ignore the customization knowledge and the suggestions offered by KASE und
manually customize the architecture. This may introduce errors in the design. Most design tools
contain domain-independent constraints to check for the syntactic consistency of a design (e.g.,
each module has at least one input and output, a named procedure is not provided by two
difterent modules). KASE contains. in additon to these, architecture-specific constraints that
check for the semantic consistency of the final design. These constraints are represented
declarativelv in the Constraint-Checker subsystem of KASE (Figure 1). Figure 16 shows how
constraints are represented in the Constraint-Checker. Details of the motivations for this
representation are given elsewhere (Nakano & Bhansali, 1993a; Nakano & Bhansali, 1993b) and

here we will brietly summarize the main ideas.
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(defconstraint
:generality <generality-1ype>
strength <sirengih-iype>
:designphase <designphase-rype>
:constraint <consiraint>
rannotation <siring>
)

Figure 16. Representation of constraints in KASE

The :generality, :strength, and :designphase attributes are used to classify constraints from
different perspectives. The :generality atribute refers to the scope of applicability of constraints.
For example, a constraint may apply to all software systems (these are the ones typically
implemented in CASE tools), it may be specific to certain projects, specific to certain application
domains, and so on. In KASE some of the categories for classifying constraints according to their
generality are:

* general-architectural constraints which apply to all software designs,

* specific-architectural constraints which apply to all designs based on a generic architecture,

* general-domain constraints which apply to all problem specifications,

* problem-class-specific constraints which apply to all problem instances of a problem class.

The ssrrength attribute of a constraint is meant to indicate how serious the effects of violating
that constraint are. Examples of constraint categories based on their strength are:

* enforced: These are constraints that are automatically enforced by KASE. This is
implemented using attached methods on slot attributes and the active value feature3 in KEE.
Type constraints and certain kinds of inverse relations are typical constraints that belong to this
category.

« strong: These are constraints which. if violated. would imply a tatal flaw in the design and
would result in a run-time error if not resolved.

* weak: These are constraints which, if violated. usually indicate some redundancy or
sloppiness in the design and may or may not be harmless. (If we use an analogy with compilation
then the strong and weak constraints correspond to the ervor and warning messages, respectively
that are generated by a compiler.)

The :designphase attribute refers to the relevance of the constraint to a particular process or
phase of the design. Currently there are onlv two phases that are recognized by KASE - a

maodeling phase in which problem instances are described and a dlesign phase consisting of

“ The active values feature in KEE allows one 1o specify that a particular action always occur whenever the value

ol a stotis gecessed or modilied.



Constraint Generality | Strength| Phase

If a module Xrequires procedure P then there must be some general- strong design
module Y to which X has access and which provides procedure P. architectural | ’
If transition T1 and T2 exist for some state and the conditions peneral- ,
which cause T1 and T2 are identical, then the next-state for T1 domain strong modeling
and T2 should be the same.
For at least one object that needs to be tracked, there must problem- _
be defined at least one operation that creates an instance of class-specific strong modeling
that object based on input signals
All procedures that are provided by modules must be required general- weak design
by some other modulc. architectural ‘
No moduie must be decomposed into more that 7 acneral- weak desi
submodules. architectural esign
Any event that is used to trigger a trackingAgent must be specific- srong design
posted by some other tracking A gent. architectural ' < '
Any event that is posted by a trackingAgent must be generated specific- weak desien
by some other trackingAgent. architectural b

NETEY ' , . general- . )
If Xis a submodule of Y, then Y must be a supermodule ot X. architectural enforced design

Table 1. Examples of some constraints implemented in KASE

activities that create the components of an architectural design. Table 1 gives examples of some
constraints, and their generality. strength, and designphase.
5.1 Constraint Language
The :constraint attribute specities the actual constraint. Constraints are written in a language
based on first-order logic. The syntax of a constraint is as shown in Figure 17.
In addition there are the tfollowing restrictions:
» There should be no free variables in the constraint (i.e. constraints are well-formed
formulae).
« Euch quantified variable must be of a type that has been defined as 2 unitt in KASE (e.g.
module, procedure). This is to ensure that the quantification of each variable is over a finite

range.

b The basic representation scheme in KEE is based on jirames whicl are called mnis.
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constraint ;:= <anlecedent> => <consequent>

antecedent ::= FORALL (<var> : <variype>)* <mformula> |
<mformula>

consequent ::= EXISTS (<var> : <varrype>)* <mformula> |
<mformula>

mformula ::= (AND <mformuia>") |
(OR <mformula>" )|
(NOT <mformuia> ) |
<aformula>

aformula ::= (<pred-symbol> <ierm>")

term ;= (<fh-symbol> <term>")

Figure 17. Syntax of constraints

« Each function symbol must be a pre-defined function available in Common Lisp (e.g. length)
or provided by KEE (e.g. get.value which returns the value of a slot of a unit).

« Each predicate symbol must be a pre-defined boolean function in Common Lisp (e.g.
member) or provided by KEE (e.g. unitp which checks whether its argument is a defined
unit or not).

The constraint-checker allows the use ot expressions like:

(antribute-name unit-ref)
as syntactic sugar for the expression:

(get.values unit-type unit-ref attribute-name)
where attribute-name is the name ot some slot of a unit ot type unit-tvpe and unit-ref is a variable
of type unit-type or evaluates to an instance of type unit-type. (The unir-type is interred from the
declaration of wnir-ref if it is a variable; otherwise unit-type 1s nil.)

In spite of the above restrictions, the constraint language is quite expressive and allows us to
specity a wide variety ot constraints including the ones shown in Tuble 1. As u result, evaluating
constraints can be computationally very expensive if there are a large number of units in the
knowledge-buse. Therefore we need mechanisms that can increase the etficiency of constraint
checking.

The technique that we have implemented in KASE is based on the observation that in most
cases a designer starts out with a consistent state ot the design, makes changes on certain parts of
the design or problem specification. and then checks to see if he or she has violated some
constraint. In such cases. instead of checking all the constraints known to the system. it is

necessary only to check those consuaints that could possibly have been atfected due to the design

| ]
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actions taken. (This is roughly analogous to the idea of incremental compilation versus full
compilation).

In order to be able to identify such constraints, the Constraint-Checker computes a set of
triggers for each constraint. The triggers attached to a constraint point to all actions that can
potentially cause a violation of the constraint. When a designer initiates constraint checking on
some part of the design, the constraint-checker uses the history of design actions performed by a
user to determine the set of constraints that need to be checked based on the trigger attached with
each constraint.

5.2 Edit Actions

Each action that a user performs during customization or while creating a problem
specification can be decomposed into a set of basic actions that manipulate the units and slots
represented in a KEE knowledge base. These basic actions are called edir actions. since they are
used to edit a problem specification or design. All the allowable edit actions are modeled as part
of the KASE environment. Associated with each edit action is a set of KEE/Lisp functions and
predicates called affected-clauses. These are the sets of functions and predicates whose values
might be modified as a result of executing the edit action. For example, consider the following
edit-action:

cdit-action: (add-value ?uivpe ?u ?s *v)
affected-clauses: (ger.values ?uiype ?u ’s)
(has.value.p 2utype ?u ?s 2w)

(add-value Putype ?u ?s ?v) adds ?v to slot ?s of a unit 2u of type ?urype. As a result of this
action the result of the function call (ger.values Putype ?u ?s) will change. Similarly, the value of
the predicate thas.value.p ?utvpe ?u ?s ?w) - which checks if ?w is one of the values of slot ?s of
aunit u of type “utype - might change - depending on what ?v is. Consequently these two are
the aftected clauses of the edit action.

The edit uctions are used to form triggers for the constraints.

5.3 Trigger generation

In order to explain how the constraint-checker computes wiggers, we will consider a simple
constraint in the following abstract form:

(FORALL (7x: Ty) (P ?7x)=>EXISTS (7y : T2) (Q 7x 7y))

The compiler tirst translates the above constraint to the tollowing equivalent functional form
which can be interpreted by the underlving Lisp/KEE environment:

tt (P 7?x)
(some #"(lambdat?y) (Q 7x 7y) )

{instances T2))
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where (instances T7) denotes all instances of type T2. In general, the translation involves
dropping the universal quantifiers, substituting the existential quantifier with the some construct
(available in Common Lisp), and translating the various predicates and functions to their "de-
sugared" versions. Note, that as a result of dropping the universal quantifier, the constraint now
contains 7x as a free variable.

Next, the constraint checker extracts all function calls and predicates which might be affected
by one of the edit actions in KASE. These are simply those function calls and predicates that
unify with one of the affecred-clauses of an edit action. Let (P 7x) be a function call or predicate
in a constraint C (7x denotes a set of variables) , (P ?y) be an affected-clause of an edit action E,
and ¢ be a substitution such that:

(P7x)=(P 7¥y)o

Then Eo is a trigger for the constraint C. At run-time when the constraint-checker is initiated,
it tries to match the trigger, Ec | with a step in the design history. Let E' be a design step and 8 be
a substitution, such that

(Ec)o=FE'

The constraint checker will then evaluate the constraint C6. If there are any free variables in
the constraint, the constraint needs to be evaluated for each possible instantiation of each of the
free variable. Also, note that any substitutions involving the bound variables of the constraint can
be dropped from 8. This follows directly tfrom the axioms of lambda calculus:

[72Z/M]((A 7z. (f 72)) N)

= [72/M]((A 2. (f 72")) N) ; Renaming z to 7'
= (A7Z.(f72')N ; Since 7z does not occur free in N
= (A?z.(f7z) N s Renaming 7' to z

The next section tllustrates the constraint checking mechanism using an example.

5.4 Example: Constraint Checking

Consider the sixth constraint in Table | which involves the m-TrackingAgent module of our
generic Tracking architecture. This module provides three procedures: get-triggers, get-action, und
get-posted-events. get-action returns a procedure (hereby called the rracking action) which is an
instance of the rracking-operarion schema (Section 4.1). get-triggers returns a set of events
signifying when the wacking action can be executed. get-posted-events also returns a set of events:
these are the possible events that can be posted by the tracking action.

A common kind of error that 1s made in detining m-TrackingAgent modules is that an event that
1 used to trigger a tracking action is not posted by any procedure. Therefore we need a
constraint to safeguard against such errors. In order to represent such constraints. we introduce
two new parameters for the m-TrackingAgent called triggers and posted-events. The value of triggers



is the (constant) output of get-triggers and the value of posted-events is the (constant) output of get-
posted-events. In our notation this constraint is represented as follows:

(FORALL ((?M module) (?E event))
(AND (member ?M (submodules 'm-TrackingAgent))
(member ?E (triggers 7M)))) =>
(EXIST ((?Mprime module))
(AND (member ?Mprime (submodules 'm-TrackingAgent))
{not (= ?Mprime 7M))

{(member ?E (posted-events TMprime))))

KASE compiles the above constraint into the following equivalent expression in Lisp:

(if (and (member ?M (get.values nil 'm-TrackingAgent 'submodules))
(member 7E (get.values ‘'module ?M 'triggers)))
(some #'(lambda(?Mprime)
(and  (member ?Mprime (gel.values nil 'm-TrackingA gent 'submodules))
(not (unit-cqual ?Mprime 7MY
(member 7E (getvalues 'module ?Mprime "posted-events)))
(CCS-collect-units ‘module)
with the type declaration:
((module M) (event TEY)

Unit-equal and CCS-collect-units are built-in function in the Constraint-Checker, Unit-equal
checks for the equality of two KEE units. CCS-collect-units takes a unit-type as an argument and
returns the set ot all units in KASE's kﬁow]edge-base that are of type unit-type.

To derive the trigger, the constraint checker extracts each atomic formula (a tunction call or a
predicate) in the constraint that unifies with an affected-clause of an edit action. In the above
constraint there are three such formulae:

(get.values nil 'm-TrackingAgent 'submodules)
(get.values 'module ?M 'triggers)
(getvalues 'module ?Mprime posted-events)

The value of these tunctions can change if the submodule slot of m-TrackingAgent is changed
(i.e. a new submodule is added or an existing one deleted). or if the value of the trigger or posted-
events slot of a module is changed. The corresponding edit action for doing these is:

edit-action: (change-slotvalue ?unit-type ?unit-name ?slor)

affected-clauses: (get.values 2unit-tvpe ?unit-name ?slot)
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Unifying the affected-term with each of the three formulae above and applying the substitution
to the edit-action we get the following triggers:
(i) (change-slotvalue nil 'm-TrackingAgent 'submodule)
(ii) (change-slotvalue 'module 7M 'triggers)
(iii) (change-slotvalue 'module nil 'posted-events) (Note, that the substitution
[?unit-name/ ?mprime| has been dropped).
The above constraint will be checked when:
« the submodule slot of any unit called m-TrackingAgent is changed (for each possible binding
of 7M and 7E);
« the trigger slot of any module A is changed (with 7M bound to A);
« the posted-events slot of any module is changed (for each possible binding of ?M and E)
(End of example)

One of the limitations ot the above approach is that it depends on how completely the various
edit actions have been modeled in terms of their effects on the tunction and predicate values used
in the constraint. Currently we have only considered those functions and predicates that compute
or evaluate some property of a unit or slot represented in KASE's knowledge base. Based on our
experience so far, we have found that this is sufficient to detect all constraint violations of
interest without having to do an exhaustive check.

It is, of course, possible for a user to force KASE to check all constraints irrespective of the
history of edit actions taken by the user. In that case, the constraint-checker ignores the trigger
and substitution information and tries each constraint for each possible substitution of the free
variables in the constraint. Currently, there are about 30 constraints (including the architecture-
specific and problem-class-specific constraints for the tracking domain). Checking all the
constraints after the architecture has been instantiated takes a few minutes, whereas checking
constraints based on the history ot edit actions takes from u few seconds to a few minutes
depending on the length of the edit action history.

The constraint checker has a rudimentary paraphraser which provides an English paraphrase of
each violated constraint. A unique feature ot the constraint generator is its ability to suggest
remedial actions to remove the violated constraints. Details ot the remedy generation algorithm

may be found elsewhere (Nakano & Bhansali, 1993a).

6 Customization of Architecture: An Example Session

In order to give u tlavor of the design process in KASE we will describe very brietly a design
session involving a hypothetical designer who is using KASE to customize the generic tracking

architecture tor the tracking problem described earlier. In order to aid readability. the design
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session is divided into the customization of the 4 main modules: m-TrackingArchitecture, m-Control,
m-BlackboardPanel, and m-TrackingComponent. Knowledge of blackboard-model based
architectures is helpful in understanding the process, but the objective is to elucidate the variety
of knowledge-based assistance being provided to the designer.

6.1 m-TrackingArchitecture

The designer begins by using one of the graphical tools to show the module decomposition
diagram for the generic architecture. KASE shows the customizable modules highlighted in the
diagram. The designer decides to begin the customization process by starting from the top-level
module, m-TrackingArchitecture. To customize the module the designer moves the mouse over the
module and clicks. KASE presents a customization menu that is context-sensitive and contains a
list of all known customization options available for this module, along with an explanation of
what each command does on the bottom panel of the screen.

For m-TrackingArchitecture there is just one parameter called solution-straregy that represents the
overall solution strategy for the problem. In general, there are three main swrategies for solving
problems in this architecture: event-driven (or data-driven or bottom-up), expectation-driven (or
model-driven or top-down) and hybrid (i.e., both event- and expectation-driven). KASE presents
a list of these three alternatives and asks the designer to select one. The designer decides to
initially build a purely event-driven system. KASE incorporates this choice and marks the
module as being customized.

There are two enforced constraints attached with this parameter that constrain the
customization choices for two other modules: m-SituationBoard and m-TrackingComponent.
Specitically, the constraint states that if an event-driven solution strategy is chosen then the m-
ControlPanel submodule of m-SituationBoard should be of tvpe m-EventPanel and the m-
TrackingAgent submodules of m-TrackingComponent should be of type m-Event-based-TrackingAgent.
However, it 1s not necessary for a designer to consider all the ramitication of this decision at this

point and she continues on.

6.2 m-Control

The designer next decides to work on the m-Control module. Thus, KASE does not prescribe a
predetermined sequence of design actions, and lets the designer control the design process as
much as possible. The'm-Control module contains the top-level driver routine for the architecture
called p-simple-control (Section 4). The algorithm essentially consists of a loop where in each
iteration, the algorithm picks pairs ot a tracking agent from m-TrackingComponent and an object
from m-SituationBoard. und executes the operations associated with the tracking agent on the
objects. Depending on what algorithm is used to select the tracking agents and objects, and how
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many operations and objects are to be processed in each iteration, a wide variety of control
algorithms are possible.

One of the parameter for the p-simple-control procedure is called the focusing-strategy. There
are two choices for this parameter: TrackingAgent-based and BlackboardLevel-based. The
designer chooses a tracking-agent based focusing strategy. This triggers a transformation that
refines the program-schema forming the body of p-simple-control:

loop[{ parlassign{agents, detemine-executable-agents(]],
assign{nodes, determine-BB-nodes[]]],
assign{schedule determine-schedule{agents,nodes)
call{execute-schedulef[schedule]] ),

termination-condition[]]

loop[{ assign[agents, detcrmine-¢ xecutable-agents(}],
assign[nodes, determine-B B-nodes[]]],
assignfschedule.determine-schedule[agents,nodes]
callfexccute-schedulefschedule)] },

(crmination-condition(]]

Each of the subroutines in the above procedure are also generic procedures that can be further
customized. The user next clicks on determine-executable-agents. One of the parameters of this
procedure is the algorithm used to select the list of executable tracking-agents (after having
determined which tracking-agents have their trigger conditions satisfied). One choice for this
algorithm. which is selected by the user, is a best-first selection algorithm. KASE does not
possess enough customization knowledge to completely synthesize a best-first algorithm. So it
simply records this decision and informs the user that she needs to provide an algorithm that
takes as input a set of available tracking-agents and returns the most promising one.

At this point, the designer decides to shift her attention to the m-TrackingComponent module
(realizing, opportunistically, that she first needs to determine the set of m-TrackingAgent
submodules in the m-TrackingComponent module before beginning to design a best-first selection
algorithm). Recent studies (Guindon, 1990) have provided empirical evidence that this kind of
opportunistic shift occurs frequently during design and a guiding theme in our project has been to
provide a design environment that permits a designer the flexibility to navigate among different

components of the design (Guindon. 1992).
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6.3 m-TrackingComponent

The m-TrackingComponent module contains as parameters the submodules of type m-Event-
based-TrackingAgent. Each such submodule is comprised of three procedures - get-action, get-
triggers, and get-posted-events - described earlier. The parameters for an m-Event-based-
TrackingAgent are therefore the trigger, the action, and the posted-events. The user selects a
customization command to suggest the set of tracking actions to be used in instantiating each m-
Event-based-TrackingAgent. KASE responds with the following message:

"You need to first instantiate the Blackboard-Levels parameter of
m-BlackboardPanel module!"

KASE uses the representation of customization commands to detect dependencies between
design steps and is able to detect and warn a user if the user tries to customize a parameter whose
value might later be affected by another parameter. Thus, although KASE does not prescribe a
particular design process, it warns a designer if she rries to initiate a design step that is likely to

be revised later when some other part of the design is instantiated.

Select desired BB levels (Press HELP for rationale)

SELECT &LL
DESELECT ALL

DCHE
LBORT
ustomization commands LINE
TTSSERT-RE-LEY o SOURCE
INSTANTIATE-EE-LEYVELS f FLATFCRM
- - HARPMOMIC

HARMORIC-LINE-ASSOC
(a) FLATFORM-SOURCE-A5350C
¢ SOURCEHARMCHIC-A5S0C
LINE-UINEZEG-4530C
STATICONMNHARMONMC-BEELRING
STATION-LINE-EEARING
ST ATION-LIMESEG-BEARING

(b

Figurc 18. Customizing then-BlackboardPanelmodule in the generic tracking architecture

6.4 m-BlackboardPanel

Guided by KASE the designer proceeds directly to the m-BlackboardPanel module. The
parameters here are the submodules m-Level each of which contains procedures to create and
manipulate instances of some object or relation. The customization commands available for this
module are shown in Figure 18(a). Clicking on suggest-bb-levels, the user is presented
with a list ot objects and relations that should be represented in m-Levels (Figure 17(b)). The
designer can ask KASE to explain its suggestions and KASE uses annotated text templates
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associated with the rules to provide explanations, for example (the following is a verbatim copy
of an explanation generated by KASE):
“LINE is an intermediare object/relarion needed in order 1o rrack
PLATFORM
SOURCE

SOURCE-LINE-ASSOCIATION.
Therefore, it must be a level of m-BBPanel”

The designer can use this rationale to modify his requirements and/or refine a KASE design
heuristic. (This would involve changing the rule or method associated with the customization
command. Currently KASE does not contain any tool to help a user in doing this.)

6.5 m-TrackingComponent Revisited

Having instantiated the submodules ot m-BlackboardPanel parameter the designer retumns to the
m-TrackingComponent module and re-tries to instantiate its submodules. The tracking actions
consist of all operations required to compute and monitor the various properties ot the objects
and relations to be tracked.

KASE first determines the set of all operations that can atfect any of the objects or relations
represented in m-Level. It then determines the set of events for each of the operations, using a set
of heuristic rules (a paraphrase of some of the heuristics are shown in Figure 19). A designer can
ask KASE for a rationale regarding what operations an event triggers and why, which operations

post an event and why, and why a particular operation was selected to be a tracking action.

Heuristic 1 (Determining types of events).

It an object is represented in an m-level |, then create events for cach attribute of the object that can be modified.
(The event represents the tact that the value ol the object attnnbute has been updated).

Heuristic 2 (Determining preconditions)

[f an opcration, Opy, updates the value ot a derived attribute, Ay, and the value of the derived attribute
tunctionally depends on the value of some other attribute, A2, then any cvent that signals an update in the value of

A7 must trigger operation Opj.

Figure 19. Examples of heuristics used to determine the set ol events triggering trackingAgents.

There are other customization commands provided by KASE that automate some of the more
frequently occurring design activities for such architectures, for example, design optimizations.
One such optimizing command is to merge events. [t may be the case that whenever a particular
event occurs it is usually accompanied by another event. For example, the change in a particular

atribute. say heading. of a tracked object may usually be accompanied by changes in its velocity

"
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as well as a frequency shift in the signal associated with that object. Thus, it might be more
efficient to group all operations that depend on either of these three events and perform them
together.

This example illustrates another guiding theme of our approach that is well-known in
knowledge-based software engineering research (e.g., (Smith, 1990; Waters, 1985)): Divide the
design task between a human and KASE in a way that exploits the unique skills of each. In
general, the human is better equipped to decide when to apply an optimization technique and
what optimization techniques to use, whereas the machine is better equipped to carry out the
optimization task, propagate the effects of those changes to other parts of the program (in the
above example revising the trigger and posted-events parameter of each tracking agent),
remember the optimization task, and if necessary, undo the effects of the optimization operation
later. The use of generic architectures provides a context whereby useful and common

architecture-specific optimization tasks can be identified and mechanized.

6.6 Constraint checking

At this point the designer wishes to see if the design so far violates any constraints. So she
initiates the constraint checker. (For the sake of illustration we will assume that the designer has
ignored one of the suggested values for the trigger parameter of m-TrackingAgents). The constraint
checker provides to a user two panels called the Constraints Filtering panel and the Edit Actions
Filtering panel which allow a user to limit the set of constraints checked based as well as to look
for only those constraints that get violated as a result of a specific set of edit actions (Nakano &
Bhansali, 1993a). The user clicks on Strong constraints, Specific architectural constraints, and
Designphase in the Constraints Filtering panel and selects all the actions trom the Edit Actions
Filtering panel.

The constraint checker presents to the user one design violation. The violation is caused due to
the following constraint: An event that is posted by a trackingAgent must be generated by some

other nackingAgent. The diagnostic message generated by the constraint checker is:

Violarion: V1, Constraint=Triggcr-generated ,
Vars=(M TrackingAgent-231) (?E line-segment-created-cvent)
Faplanarion: The event line-segment-created-cvent which is used to trigger trackingAgent-231 is not posted by

any other trackingAgent.

The designer may now examine the tracking action associated with TrackingAgeni-231 10 see
why line-segment-created-event is needed as a trigger. She may then decide to either delete /ine-

segment-created-eventas a trigger or may introduce a new trackingAgent that posts this event.



For certain kinds of constraints, the constraint checker also generates a list of suggested remedies
and also computes the effect of executing each of those remedies (Nakano & Bhansali, 1993a)

7 Discussion of Results

We implemented the customization knowledge and constraints for customizing the generic
tracking architecture and have successfully used them to synthesize two different systems from
the same generic architecture for tracking. The two systems were (1) ELINT- designed for
wacking aircraft based on radar signals emited by them(Bhansali & Nii, 1992a), and (2) HASP -
designed for tracking ships and submarines based on noise signals generated by them. Both these
systems had been originally designed by different groups of designers(Brown et al., 1986; Nii et
al., 1982) and both were later fielded. Our exercise using KASE essentially showed a rational
reconstruction of the designs of these two systems using the same design process on a generic
architectural design. When compared with the results of the original design (Table 2)° we found
that the results produced by KASE were more systematic and (we believe) more reliable although
they may not be as efficient.

ELINT |[KASE-ELINT| HASP KASE-HASP
oot [ 5] ; I
s ° 10 N N
Events 9 15 14 46
Table 2. Comparison of designs produced by KASE with the original designs

For example, using KASE we obtained about twice as many m-TrackingAgent modules as in the
original design of HASP. The wacking agents differed considerably in their triggers. Comparing
these tracking agents with the original design. we found that several trigger conditions were
either missing or were unnecessary in the original design. But they had been designed in this way
in order to reduce the overhead of scheduling knowledge sources: combining the functionality of
several tracking agents into one module and triggering them based on a small set of triggers

results in faster scheduling of the tracking agents in each control cycle.

7 We actually implemented only a subsct of the complete domain of ELINT and HASP. The numbers for ELINT
and HASP m Figure 12 represent the numbers when restricted to those subsets (which consists of about cighty

pereent of the complete systen).,



Using the optimization commands mentioned earlier (Section 6.5) it is possible to obtain the
same design as in the original implementation; however, the important point is that by using
KASE one can systematically consider the implications of each heuristic that designers normally
use in designing systems. This reduces errors in the design due to omission. Furthermore, by
recording the history of customization steps (which is done automatically by KASE) a designer
can re-create or undo the design process at a later stage. This enhances the maintainability of the
system.

We also conjecture that besides improving reliability and maintainability, KASE improves
productivity. We are not yet in a position to support this conjecture directly since we do not have
data which can be used to compare the effort expended by the original designers in designing
their systems and the etfort expended in designing them using KASE. However, we can obtain
indirect evidence by comparing the effort expended in designing ELINT and HASP using KASE.
The design of KASE-ELINT took about 5 months (including the acquisition of domain and
customization knowledge and implementation of the optimizing commands) whereas the design
of KASE-HASP took only 2 months (ot which a major part was devoted to domain knowledge
acquisition which was considerably larger that ELINT's and not well documented). In other
words, after the first design using a generic architecture, the effort for subsequent designs is
determined mostly by the effort in domain knowledge acquistition.

KASE has been implemented using Lisp and KEE, an object-oriented knowledge
representation and programming environment. It contains about 15000 lines of Lisp code and
runs on TI Explorers. Except tor some of the graphical display routines the rest of the code is
quite efficient. The output that is produced by KASE is a mix of specifications (using pre- and
post-conditions) and pseudo-code. For the two systems that have been produced so far, it is
relatively straightforward to convert this output to code. In our current work (see below) we have
added transformation rules that converts the output of KASE to produce executable code (in
Fortran).

8. Current and Future Work

KASE is not yet an industrial-strength system. It has so fur been used only by members of the
KASE project. However. different parts of the system were implemented by different people and
are constantly in use by other members of the project. This otters us confidence in the robustness
and usability of the system.

Our current work seeks to measure the generality and usability of KASE by using it in two
different domains. The first domain is concerned with a subsystem of KASE itself: the diagram
manager subsystem. This system contains the routines that implement the graphical intertace ot

KASE. It is used to display the problem-cluss model and the architecture structure through
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various diagrams (e.g., module decomposition, data-flow, and state-transition diagrams). These
routines were written by different members of the KASE project at different times and differ
considerably in their implementation details. However, they can all be described in a uniform
manner at some architectural level. We have created a generic architecture that represents the
design of the various subsystems and have implemented the customization knowledge that can be
used to synthesize the individual (existing, as well as new) diagramming subsystems semi-
automatically. Using the system we have been able to generate new kinds of diagrams in minutes
instead of a few days that it used to take earlier (Bhansali, 1993).

The second domain we are investigating is concerned with the analysis of radio signals
obtained by planetary probes (e.g., Voyager and Mars Observer). We currently have an
architectural design of a system that processes these signals and performs various kinds of
filtering, compression, and error-correction on them and computes various geometrical
properties of celestial bodies. Depending upon various parameters like the path taken by a signal,
the accuracy required, or the throughput needed, different variants of the system are created by
individual users. Our goal is to represent the generic design of all these systems in KASE as a
generic architecture and investigate how KASE can help the users in improving their
productivity. Although we do not believe that KASE is ready to be made available for general
use soon, we are planning to have actual end-users use the system and obtain empirical evidence

to validate its usability.

9. Related Work

We share the general goal of supporting the synthesis ot domain-specific software systems
with  many other projects (e.g. KITSS(Nonnenmann & Eddy, 1992),
SINAPSE(Kant,Daube MacGregor, & Wald, 1991), ELF(Setlitf & Rutenbar, 1992),
ONIX(Barstow, 1983)) although the various projects differ substantially in their respective
approaches. Some of these differences are due to the different domains being addressed (e.g.
telephony, CAD, scientific computing) , the generality of the class of systems addressed, and the
exact torm of the operational goal (code generation, specification acquisition, design, testing,
etc.) of the projects. A representative sample of some of the other domain specific software
svstems can be found elsewhere(Lowry & McCartney, 1991). Here we brietly survey some of the
more closely related work and how they relate to our project.

KASE is based on a novel framework for developing software systems in which generic
architectures are the fundamental unit of reuse. In this respect our work is related to the Domain-
Specitic Software Architecture (Workshop, 1990) project. However, as tar as we know, KASE is
the first system that has (1) demonstrated how the concepts of software architectures. problem

classes. and software synthesis can be integrated in a unified framework. and (2) shown the
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applicability of the framework in the design of two different systems based on a common generic
architecture.

If we consider the generality of domain-specific software systems, then on one end of the
spectrum lies the application generator approach. Application generators may be thought of as
high-level compilers for narrow-spectrum, application-specific languages. They are well suited
for domains where a set of requirements can be easily expressed in some simple, high-level
language. However, since the knowledge about the application domain is embedded in the
macros and interpreters of the application generator and the compilation process is opaque to an
end-user, it is difficult to adapt them for different application. In KASE, the knowledge for
customizing an architecture is represented explicitly as rules and methods which makes it much
more flexible than application generators. On the other hand, it seems to indicate that the KASE
approach is not appropriate tor all problem classes. Its utility depends critically on the complexity
of acquiring and representing the relevant customization knowledge and ensuring its correctness.
At one extreme, there are classes of problems that are well understood and for which the
customization knowledge would be relatively complete and correct. In such domains an
application generator approach would be more efficient than KASE. On the other extreme are
entirely new classes of problems for which little is known regarding the design process. In such
domains, the customization knowledge would be very sparse and KASE could not otfer much
assistance beyond that offered by the current CASE technology. Thus, it seems that KASE would
be most useful for domain that lie between these two extremes.

The idea of constructing software systems by first capturing a model of a class of systems was
first presented in a system called Draco (Neighbors, 1984). In the Draco approach, there exists a
hierarchy of domains each corresponding to either a specitic problem area (called an application
domain) or a general, application-independent domain (called a modeling domain). The
application domain ot Draco con’espohdg to a problem-class description in KASE. The major
differences between the Draco approach and KASE arise due to the different interpretation on
what constitutes the basic unit of reuse. In Draco, the various domain models are the basic
reusable units. The design task consists of refining problem specifications written in one domain
language into another domain language repeatedly until an "executable” domain is reached. On
the other hand, in KASE our emphasis has been less on the reuse of domain models and more on
the reuse of software architectures, which is considered the basic reusable unit. The design task
consists of refining a generic software architecture into a specific one suitable for a specific
problem instance, and the major concern is on providing tools and mechanisms that allow
software designers to do it efficiently.

Software architectures are the focus of considerable attention by several researchers at
Camegie Mellon University (Allen & Garlan, 1992; Lane, 1990. Shaw, 1989). A major objective
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of the work being done there is the development of an (application-independent) taxonomy of
software architectures. This includes the identification of commonly used architectural
paradigms, the relationship between various architectural paradigms and problem classes, and
analysis of trade-offs involved in choosing one paradigm over another (Shaw, 1989). Luane (Lane,
1990) describes a user-interface software architecture and design rules for building specific user
interface systems. The approach consists of creating a space of design alternatives and
formulating rules that indicate good and bad design choices based on problem requirements -
which is quite similar to the approach in KASE. However, it seems that there is less support for
semi-automated or automated conversion of the resultant design into code. Another line of
research is concerned with investigating how software architectures can be formally represented,
allowing one to explore its properties systematically which in turn could ultimately lead to
algorithimic techniques for choosing software architectures (Allen & Garlan, 1992).

Other closely related work to KASE are the LEAP project at Lockheed (Graves, 1991) and the
ROSE-2 system developed at MCC. LEAP also uses architectures as a basis for synthesizing
systems and relies on an interactive designer to synthesize a specific system. It is also capable of
learning relevant rules dynamically during design. ROSE-2 contains a library of generic design
schemas for certain application classes that can be composed and refined to produce specific
designs for problem instances.

Most of the above systems, including KASE, are concerned with routine or parametric design
whereby an abstract, general artifact is refined into a specific one. In contrast, Feather et al.
(Feather,Fickas, & Helm, 1991) describe how non-routine or innovative designs can be produced
for certain kinds of applications that involve multiple agents interacting in order to achieve some
overall functional goal. Their approach consists of creating a set of design operators that is
sufficient to create a search space of all possible designs tor an application class, followed by a
heuristic search in the design space for solving a particular problem. However, other than this,
little work that has been done in exploring how innovative or novel software system designs can
be synthesized. A good topic for future research would be to investigate principled ways of
synthesizing generic software architectures from a set of basic building blocks.

There is close parallel between our approach of synthesizing software systems und
parameterized programming (Goguen, 1989). In parameterized programming, a4 generic program
represents a parameterized algebraic theory which can be instantiated by using a view (theory
morphism) that binds actual and formal parameters. From this perspective, KASE can be thought
of as providing a library of highly parameterized programs (the generic system design) as well as

tools to assist a user in instantiating them based on the requirements of a particular application.



10. Conclusions

We have presented an approach to software reuse that is based on abstracting the design of a
class of problems as a generic architecture. Such an approach provides reuse at the level of entire
systems in addition to reuse at the level of algorithms or subroutines. We have proposed that a
generic architecture can be usefully viewed as a cross-product of a problem-class and a set of
solution features. A library of generic architectures can thus be obtained and indexed by
considering various combinations of problem classes and solution features. We have proposed
that knowledge about an application be separated into a problem-class which contains concepts
generic to a class of problems and a problem-instance which contains concepts specific to a
particular application. The problem-cliass model can then be used to facilitate the acquisition of
the specification of a problem instance - a task that currently constitutes a significant bottleneck
in creating domain-specific systems. In addition, the problem-class model can be used to
formalize the design process knowledge which, in turn, can be used to assist designers in
designing systems for many different application problems.

A distinguishing feature of KASE is its emphasis on providing tools that support the way
humans design. The goal in KASE is not towards full automation of the design process as in
traditional automatic programming research (e.g. (Smith, 1990)). Instead, KASE's goal is to
supply the appropriate knowledge to a designer in the right context so as to enable him to
increase his productivity and reduce errors in the design. This has led us to adopt an approach
that strikes a balance between entirely formal, axiomatic approaches and informal, hypertext-
based approaches. We have also striven to incorporate existing software modeling and design
practices in KASE. In particular. we have described a scenario where object-oriented modeling,
structural and functional decomposition, data-tlow and state-transition diagrams can all be useful
in the design of complex systems. This makes KASE a practical tool that can be used in an
incremental manner by software designers.

The KASE approach is not suitable for all problem classes. It's utility depends to a large
extent on the feasibility of acquiring the relevant customization knowledge. We believe that
KASE is most appropriate for problem classes whose design process is neither well understood
nor poorly understood. One of the research issues that we are interested in is can some of the
customization knowledge be acquired und subsequently modified directly by end-users? One way
of doing this is to infer or /earn appropriate customization rules by observing a user's actions.
Such a capability has been proposed in (Garg & Bhansali, 1992) and we plan to investigate how

that work can be extended to learn design rules in KASE.
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